If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3b^2-13b^2+10b=0
We add all the numbers together, and all the variables
-10b^2+10b=0
a = -10; b = 10; c = 0;
Δ = b2-4ac
Δ = 102-4·(-10)·0
Δ = 100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{100}=10$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-10}{2*-10}=\frac{-20}{-20} =1 $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+10}{2*-10}=\frac{0}{-20} =0 $
| -11x+2=-3x+82 | | −10r−20=-20−20 | | 1/2f-15=-7 | | -3x+40=5x-16 | | 2.43(s-5)=7.29 | | r-13=8(4) | | 35c=105 | | 5x2–12x–30=0 | | 1x-7=-12 | | 2x-16=+4x | | -1.1k=-1.21k | | Y=-0.5x^2+3x+4=0 | | -4x-2=12x+22 | | x/13=20/52 | | j/3+35=40 | | 6/4x+9=2+3/2x | | 6(k+8)=(2k-10) | | 65+x=75 | | 5x=3(2x−4) | | 17x-10=7x-30 | | f²-4f=21 | | 27x-1+25x+3=180 | | (3x-50)°=(2x-5)° | | 17x-10=7x-39 | | 31=−1/6n | | 2x-6=2(x+2)-10* | | 6=-3+x/2 | | 12=a+5a | | 32=-8(6z-4) | | O.1x+3.1=2.03x-2.96 | | -x-9=-6x+26 | | -3-4(1+8f)=23 |